If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39^2+x^2=89^2
We move all terms to the left:
39^2+x^2-(89^2)=0
We add all the numbers together, and all the variables
x^2-6400=0
a = 1; b = 0; c = -6400;
Δ = b2-4ac
Δ = 02-4·1·(-6400)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*1}=\frac{-160}{2} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*1}=\frac{160}{2} =80 $
| Y=2n-27 | | -(8x+5)=8 | | 3.4z+6.3=1.7z+47.1z | | 4r+15=-15 | | -5j-3=-28 | | x^2-17x=50=-2 | | 2x-3=99 | | -5(2x+9)=6 | | a+7=9a | | 1.5=z-6.6 | | 4(1x+1)=32 | | -7p=35 | | -4x-10=32 | | -8=2*(-3)+(x) | | 1+2n=2.1 | | (x+6)^2=14 | | 2s•10=60 | | 17={5x+3} | | -7c+2=20+2c | | 4(3x+1)=124 | | -19-10b=20-4-3b | | 8n+8=17n | | -0.3x+3.25=-0.7x+8.45 | | 19+19p=20p | | 10n-7=9n+7+3n | | 3/5=4p-6/6p-8 | | 16v−7v=18 | | -3z=8-4z | | 4(x+2.48)=3x | | 2^(7x)*8=256^(x) | | -8+3c=8+5c | | 6(5x+8)=-6 |